CTDUNet: A Multimodal CNN–Transformer Dual U-Shaped Network with Coordinate Space Attention for Camellia oleifera Pests and Diseases Segmentation in Complex Environments

Author:

Guo Ruitian1,Zhang Ruopeng1ORCID,Zhou Hao1,Xie Tunjun1,Peng Yuting1,Chen Xili1,Yu Guo2,Wan Fangying1,Li Lin1,Zhang Yongzhong1,Liu Ruifeng3

Affiliation:

1. School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China

2. School of Business, Central South University of Forestry and Technology, Changsha 410004, China

3. School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Camellia oleifera is a crop of high economic value, yet it is particularly susceptible to various diseases and pests that significantly reduce its yield and quality. Consequently, the precise segmentation and classification of diseased Camellia leaves are vital for managing pests and diseases effectively. Deep learning exhibits significant advantages in the segmentation of plant diseases and pests, particularly in complex image processing and automated feature extraction. However, when employing single-modal models to segment Camellia oleifera diseases, three critical challenges arise: (A) lesions may closely resemble the colors of the complex background; (B) small sections of diseased leaves overlap; (C) the presence of multiple diseases on a single leaf. These factors considerably hinder segmentation accuracy. A novel multimodal model, CNN–Transformer Dual U-shaped Network (CTDUNet), based on a CNN–Transformer architecture, has been proposed to integrate image and text information. This model first utilizes text data to address the shortcomings of single-modal image features, enhancing its ability to distinguish lesions from environmental characteristics, even under conditions where they closely resemble one another. Additionally, we introduce Coordinate Space Attention (CSA), which focuses on the positional relationships between targets, thereby improving the segmentation of overlapping leaf edges. Furthermore, cross-attention (CA) is employed to align image and text features effectively, preserving local information and enhancing the perception and differentiation of various diseases. The CTDUNet model was evaluated on a self-made multimodal dataset compared against several models, including DeeplabV3+, UNet, PSPNet, Segformer, HrNet, and Language meets Vision Transformer (LViT). The experimental results demonstrate that CTDUNet achieved an mean Intersection over Union (mIoU) of 86.14%, surpassing both multimodal models and the best single-modal model by 3.91% and 5.84%, respectively. Additionally, CTDUNet exhibits high balance in the multi-class segmentation of Camellia oleifera diseases and pests. These results indicate the successful application of fused image and text multimodal information in the segmentation of Camellia disease, achieving outstanding performance.

Funder

National Natural Science Foundation in China

Education Department Key Program of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3