A Feature Combination-Based Graph Convolutional Neural Network Model for Relation Extraction

Author:

Xu Jinling,Chen Yanping,Qin Yongbin,Huang Ruizhang,Zheng Qinghua

Abstract

The task to extract relations tries to identify relationships between two named entities in a sentence. Because a sentence usually contains several named entities, capturing structural information of a sentence is important to support this task. Currently, graph neural networks are widely implemented to support relation extraction, in which dependency trees are employed to generate adjacent matrices for encoding structural information of a sentence. Because parsing a sentence is error-prone, it influences the performance of a graph neural network. On the other hand, a sentence is structuralized by several named entities, which precisely segment a sentence into several parts. Different features can be combined by prior knowledge and experience, which are effective to initialize a symmetric adjacent matrix for a graph neural network. Based on this phenomenon, we proposed a feature combination-based graph convolutional neural network model (FC-GCN). It has the advantages of encoding structural information of a sentence, considering prior knowledge, and avoiding errors caused by parsing. In the experiments, the results show significant improvement, which outperform existing state-of-the-art performances.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3