Author:
Xu Jinling,Chen Yanping,Qin Yongbin,Huang Ruizhang,Zheng Qinghua
Abstract
The task to extract relations tries to identify relationships between two named entities in a sentence. Because a sentence usually contains several named entities, capturing structural information of a sentence is important to support this task. Currently, graph neural networks are widely implemented to support relation extraction, in which dependency trees are employed to generate adjacent matrices for encoding structural information of a sentence. Because parsing a sentence is error-prone, it influences the performance of a graph neural network. On the other hand, a sentence is structuralized by several named entities, which precisely segment a sentence into several parts. Different features can be combined by prior knowledge and experience, which are effective to initialize a symmetric adjacent matrix for a graph neural network. Based on this phenomenon, we proposed a feature combination-based graph convolutional neural network model (FC-GCN). It has the advantages of encoding structural information of a sentence, considering prior knowledge, and avoiding errors caused by parsing. In the experiments, the results show significant improvement, which outperform existing state-of-the-art performances.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献