Distantly Supervised Relation Extraction via Contextual Information Interaction and Relation Embeddings

Author:

Yin Huixin1,Liu Shengquan1ORCID,Jian Zhaorui1ORCID

Affiliation:

1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

Abstract

Distantly supervised relation extraction (DSRE) utilizes an external knowledge base to automatically label a corpus, which inevitably leads to the problem of mislabeling. Existing approaches utilize BERT to provide instances and relation embeddings to capture a wide set of relations and address the noise problem. However, the method suffers from a single method of textual information processing, underutilizing the feature information of entity pairs in the relation embeddings part and being interfered with by noisy labels when classifying multiple labels. For this reason, we propose the contextual information interaction and relation embeddings (CIRE) method. First, we utilize BERT and Bi-LSTM to construct a neural network model to enhance contextual information interaction by filtering and supplementing sequence information through the error repair capability of the Bi-LSTM gating mechanism. At the same time, we combine the vector difference between entity pairs and entity pairs in the relation embeddings layer to improve the relation embeddings accuracy. Finally, we choose sparse softmax as the classifier, which improves the ability to control the noise categories by controlling the number of output categories. The experimental results show that our method significantly outperforms the baseline method and improves the AUC metric by 2.6% on the NYT2010 dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3