DiffFSRE: Diffusion-Enhanced Prototypical Network for Few-Shot Relation Extraction

Author:

Chen Yang1ORCID,Shi Bowen2

Affiliation:

1. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

2. School of Journalism, Communication University of China, Beijing 100024, China

Abstract

Supervised learning methods excel in traditional relation extraction tasks. However, the quality and scale of the training data heavily influence their performance. Few-shot relation extraction is gradually becoming a research hotspot whose objective is to learn and extract semantic relationships between entities with only a limited number of annotated samples. In recent years, numerous studies have employed prototypical networks for few-shot relation extraction. However, these methods often suffer from overfitting of the relation classes, making it challenging to generalize effectively to new relationships. Therefore, this paper seeks to utilize a diffusion model for data augmentation to address the overfitting issue of prototypical networks. We propose a diffusion model-enhanced prototypical network framework. Specifically, we design and train a controllable conditional relation generation diffusion model on the relation extraction dataset, which can generate the corresponding instance representation according to the relation description. Building upon the trained diffusion model, we further present a pseudo-sample-enhanced prototypical network, which is able to provide more accurate representations for prototype classes, thereby alleviating overfitting and better generalizing to unseen relation classes. Additionally, we introduce a pseudo-sample-aware attention mechanism to enhance the model’s adaptability to pseudo-sample data through a cross-entropy loss, further improving the model’s performance. A series of experiments are conducted to prove our method’s effectiveness. The results indicate that our proposed approach significantly outperforms existing methods, particularly in low-resource one-shot environments. Further ablation analyses underscore the necessity of each module in the model. As far as we know, this is the first research to employ a diffusion model for enhancing the prototypical network through data augmentation in few-shot relation extraction.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3