Training a Disaster Victim Detection Network for UAV Search and Rescue Using Harmonious Composite Images

Author:

Zhang Ning,Nex FrancescoORCID,Vosselman GeorgeORCID,Kerle NormanORCID

Abstract

Human detection in images using deep learning has been a popular research topic in recent years and has achieved remarkable performance. Training a human detection network is useful for first responders to search for trapped victims in debris after a disaster. In this paper, we focus on the detection of such victims using deep learning, and we find that state-of-the-art detection models pre-trained on the well-known COCO dataset fail to detect victims. This is because all the people in the training set are shown in photos of daily life or sports activities, while people in the debris after a disaster usually only have parts of their bodies exposed. In addition, because of the dust, the colors of their clothes or body parts are similar to those of the surrounding debris. Compared with collecting images of common objects, images of disaster victims are extremely difficult to obtain for training. Therefore, we propose a framework to generate harmonious composite images for training. We first paste body parts onto a debris background to generate composite victim images and then use a deep harmonization network to make the composite images look more harmonious. We select YOLOv5l as the most suitable model, and experiments show that using composite images for training improves the AP (average precision) by 19.4% (15.3%→34.7%). Furthermore, using the harmonious images is of great benefit to training a better victim detector, and the AP is further improved by 10.2% (34.7%→44.9%). This research is part of the EU project INGENIOUS. Our composite images and code are publicly available on our website.

Funder

European Union

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Post-Disaster Survivor Detection Using UAV Imagery and Transfer Learning Strategies;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

2. Smart Surveillence Drone with Navigation System;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

3. Towards Fully Autonomous UAV: Damaged Building-Opening Detection for Outdoor-Indoor Transition in Urban Search and Rescue;Electronics;2024-01-30

4. PDD: Post-Disaster Dataset for Human Detection and Performance Evaluation;IEEE Transactions on Instrumentation and Measurement;2024

5. R-LKDepth: Recurrent Depth Learning With Larger Kernel;IEEE Signal Processing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3