Towards Fully Autonomous UAV: Damaged Building-Opening Detection for Outdoor-Indoor Transition in Urban Search and Rescue

Author:

Surojaya Ali1,Zhang Ning1,Bergado John Ray1ORCID,Nex Francesco1ORCID

Affiliation:

1. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7522 NH Enschede, The Netherlands

Abstract

Autonomous unmanned aerial vehicle (UAV) technology is a promising technology for minimizing human involvement in dangerous activities like urban search and rescue missions (USAR), both in indoor and outdoor. Automated navigation from outdoor to indoor environments is not trivial, as it encompasses the ability of a UAV to automatically map and locate the openings in a damaged building. This study focuses on developing a deep learning model for the detection of damaged building openings in real time. A novel damaged building-opening dataset containing images and mask annotations, as well as a comparison between single and multi-task learning-based detectors are given. The deep learning-based detector used in this study is based on YOLOv5. First, this study compared the different versions of YOLOv5 (i.e., small, medium, and large) capacity to perform damaged building-opening detections. Second, a multitask learning YOLOv5 was trained on the same dataset and compared with the single-task detector. The multitask learning (MTL) was developed based on the YOLOv5 object detection architecture, adding a segmentation branch jointly with the detection head. This study found that the MTL-based YOLOv5 can improve detection performance by combining detection and segmentation losses. The YOLOv5s-MTL trained on the damaged building-opening dataset obtained 0.648 mAP, an increase of 0.167 from the single-task-based network, while its inference speed was 73 frames per second on the tested platform.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3