Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images

Author:

Govil Kinshuk,Welch Morgan L.,Ball J. Timothy,Pennypacker Carlton R.

Abstract

Pioneering networks of cameras that can search for wildland fire signatures have been in development for some years (High Performance Wireless Research & Education Network—HPWREN cameras and the ALERT Wildfire camera). While these cameras have proven their worth in monitoring fires reported by other means, we have developed a functioning prototype system that can detect smoke from fires usually within 15 min of ignition, while averaging less than one false positive per day per camera. This smoke detection system relies on machine learning-based image recognition software and a cloud-based work-flow capable of scanning hundreds of cameras every minute. The system is operating around the clock in Southern California and has already detected some fires earlier than the current best methods—people calling emergency agencies or satellite detection from the Geostationary Operational Environmental Satellite (GOES) satellites. This system is already better than some commercial systems and there are still many unexplored methods to further improve accuracy. Ground-based cameras are not going to be able to detect every wildfire, and so we are building a system that combines the best of terrestrial camera-based detection with the best approaches to satellite-based detection.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Observed Impacts of Anthropogenic Climate Change on Wildfire in California

2. This is Not Normal: Climate Change and Escalating Bushfire Risk. Climate Council Briefing Paper. 12 November 2019https://www.climatecouncil.org.au/wp-content/uploads/2019/11/bushfire-briefing-paper_18-november.pdf

3. INPEhttp://queimadas.dgi.inpe.br/queimadas/portal-static/situacao-atual/

4. Decreasing fire season precipitation increased recent western US forest wildfire activity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3