Deep Learning in Plant Diseases Detection for Agricultural Crops

Author:

Loey Mohamed1ORCID,ElSawy Ahmed1,Afify Mohamed1

Affiliation:

1. Benha University, Benha, Egypt

Abstract

Deep learning has brought a huge improvement in the area of machine learning in general and most particularly in computer vision. The advancements of deep learning have been applied to various domains leading to tremendous achievements in the areas of machine learning and computer vision. Only recent works have introduced applying deep learning to the field of using computers in agriculture. The need for food production and food plants is of utmost importance for human society to meet the growing demands of an increased population. Automatic plant disease detection using plant images was originally tackled using traditional machine learning and image processing approaches resulting in limited accuracy results and a limited scope. Using deep learning in plant disease detection made it possible to produce higher prediction accuracies as well as broadened the scope of detected diseases and plant species considered. This article presents a survey of research papers that presented the use of deep learning in plant disease detection, and analyzes them in terms of the dataset used, models employed, and overall performance achieved.

Publisher

IGI Global

Subject

Multidisciplinary,General Engineering,General Business, Management and Accounting,General Computer Science

Reference66 articles.

1. Convolution neural network in precision agriculture for plant image recognition and classification

2. Amara, J., Bouaziz, B., & Algergawy, A. (2017). A Deep Learning-based Approach for Banana Leaf Diseases Classification. Proceedings of the BTW (pp. 79–88). Academic Press..

3. Precise weed and maize classification through convolutional neuronal networks

4. Deep fruit detection in orchards

5. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3