Abstract
Highland bamboo (Oldeania alpina formerly Arundinaria alpina or Yushania alpina) is a species of significant conservation value in Afromontane ecosystems across Africa. It also plays a significant role in the livelihoods of local communities. However, global climate change is anticipated to alter its ecological niche, leading to range shifts and possible habitat contractions. This study aimed to identify potentially suitable habitats for highland bamboo in Ethiopia, determine the resilience of the species under climate change, and establish the environmental factors affecting its habitat. Species distribution modeling (SDM) was implemented in the SDM R package using 231 georeferenced presence records together with climate, topographic, and soil data. To assess climate change risks to the species, predictive models were developed assuming climate scenarios for 2061–2080 under two shared socio-economic pathways (SSPs), namely, SSP2-45 and SSP5-85. The results indicated that highland bamboo mainly grows in high elevation areas with altitudes of 2100–3100 m asl with mean annual temperatures of 11.5–19.3 °C, annual precipitation of 873–1962 mm, precipitation of the driest quarter of 36–147 mm, soil pH of 5.6, and soil CEC of 30.7 cmolc/kg. The current potentially suitable habitat for this species in Ethiopia was estimated at 61,831.58 km2, with the majority of habitats being in the southern and southwestern parts of the country. Our models predicted that the suitable habitat will shrink by 13.4% under the SSP5-85 scenario, while potential new suitable areas for this species were identified under the SSP2-45 scenario. Future vulnerable areas were mostly found in central Ethiopia. Based on the predictions, we conclude that most of the suitable habitats for highland bamboo will remain suitable between the years 2061 and 2080.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献