Modeling and Mapping Habitat Suitability of Highland Bamboo under Climate Change in Ethiopia

Author:

Yebeyen DagnewORCID,Nemomissa SileshiORCID,Hailu Binyam TesfawORCID,Zewdie WorkuORCID,Sileshi Gudeta W.ORCID,Rodríguez Rosana LópezORCID,Woldie Tefera M.

Abstract

Highland bamboo (Oldeania alpina formerly Arundinaria alpina or Yushania alpina) is a species of significant conservation value in Afromontane ecosystems across Africa. It also plays a significant role in the livelihoods of local communities. However, global climate change is anticipated to alter its ecological niche, leading to range shifts and possible habitat contractions. This study aimed to identify potentially suitable habitats for highland bamboo in Ethiopia, determine the resilience of the species under climate change, and establish the environmental factors affecting its habitat. Species distribution modeling (SDM) was implemented in the SDM R package using 231 georeferenced presence records together with climate, topographic, and soil data. To assess climate change risks to the species, predictive models were developed assuming climate scenarios for 2061–2080 under two shared socio-economic pathways (SSPs), namely, SSP2-45 and SSP5-85. The results indicated that highland bamboo mainly grows in high elevation areas with altitudes of 2100–3100 m asl with mean annual temperatures of 11.5–19.3 °C, annual precipitation of 873–1962 mm, precipitation of the driest quarter of 36–147 mm, soil pH of 5.6, and soil CEC of 30.7 cmolc/kg. The current potentially suitable habitat for this species in Ethiopia was estimated at 61,831.58 km2, with the majority of habitats being in the southern and southwestern parts of the country. Our models predicted that the suitable habitat will shrink by 13.4% under the SSP5-85 scenario, while potential new suitable areas for this species were identified under the SSP2-45 scenario. Future vulnerable areas were mostly found in central Ethiopia. Based on the predictions, we conclude that most of the suitable habitats for highland bamboo will remain suitable between the years 2061 and 2080.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3