Affiliation:
1. College of Forestry, Southwest Forestry University, Kunming 650233, China
2. Yunnan Institute of Forest Inventory and Planning, Kunming 650051, China
3. Yunnan College of Tourism Vocation, Kunming 650221, China
4. College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Abstract
Qiongzhuea tumidinoda stands out as an endemic bamboo species of significant conservation importance in Southwest China, particularly in the upper reaches of the Yangtze River. It holds a pivotal role in poverty alleviation through the commercialization of its wood and bamboo shoots. However, the suitable area of this species is undergoing rapid changes due to climate change, resulting in species redistribution and potential losses for bamboo farmers. We utilized 209 presence records and 25 environmental variables from 1987 to 2012 to predict the potentially suitable habitats for Q. tumidinoda using MaxEnt (version 3.4.1), ArcGIS (version 10.8.2), and R (4.3.3). We rigorously screened the recorded data for reliability and accuracy through expert consultations and observer interviews. We performed pre-processing to select the variables with high contributions for modeling, and 11 variables were selected for the final modeling. Our findings reveal that the top three most influential variables associated with Q. tumidinoda’s distribution were the mean monthly potential evapotranspiration (Pet), annual range of air temperatures (Bio7), and mean diurnal air temperature range (Bio2), and the rates of contributions from 1987 to 2012 were 4.8333, 3.5833, and 1.7000. There was a southeastward shift and an elevation increase in the potentially suitable habitats for Q. tumidinoda. The area of potentially suitable habitats in the study region exhibited fluctuating growth, expanding from 3063.42 km2 to 7054.38 km2. The mean monthly potential evapotranspiration (Pet) emerged as a critical determinant shaping the distribution of potentially suitable habitats for Q. tumidinoda. Our study sheds light on the response of Q. tumidinoda to climate change, offering valuable insights for the development and management of plantation industries associated with this species. In the future, to enhance prediction accuracy, researchers could equally consider both organic and inorganic environmental variables. For better preservation of environment and development, Q. tumidinoda could be introduced into nature restoration projects in areas with a suitable habitat or as a commodity that participates in forest carbon sink trading.
Funder
Central Finance Forestry Science and Technology Promotion Demonstration Fund Project
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献