Projecting the impact of climate change on honey bee plant habitat distribution in Northern Ethiopia

Author:

Gebremedhn Haftom,Gebrewahid Yikunoamlak,Haile Gebremedhin Gebremeskel,Hadgu Gebre,Atsbha Tesfay,Hailu Teweldemedhn Gebretinsae,Bezabih Gebreamlak

Abstract

AbstractClimate change significantly affects the diversity, growth, and survival of indigenous plant species thereby influencing the nutrition, health and productivity of honey bees (Apis mellifera). Hypoestes forskaolii (Vahl) is one of the major honey bee plant species in Ethiopia’s Tigray region. It is rich in pollen and nectar that typically provides white honey, which fetches a premium price in both local and inter-national markets. Despite its socio-economic and apicultural significance, the distribution of H. forskaolii has been declining, raising concerns regarding its conservation efforts. However, there is limited knowledge on how environmental and climatic factors affect its current distribution and response to future climate change. The study investigates the current and projected (the 2030s, 2050s, 2070s, and 2090s) habitat distributions of H. forskaolii under three future climate change scenarios (ssp126, ssp245, and ssp585) using the Maximum Entropy Model (MaxEnt). The results show that land use (50.1%), agro-ecology (28%), precipitation during the Driest Quarter (11.2%) and soil texture (6.1%) predominantly influence the distribution of H. forskaolii, collectively explaining 95.4% of the model's predictive power. Habitats rich in evergreen trees and mosaic herbaceous with good vegetation cover are identified as the most suitable for H. forskaolii. The spatial distribution of H. forskaolii is concentrated in the highlands and mid-highlands of the eastern and southern parts of Tigray, characterized by a colder temperature. Across the three climate change scenarios, the size of suitable habitat for H. forskaolii is projected to decrease over the four time periods studied. Predictions under the ssp585 scenario reveal alarming results, indicating a substantial decrease in the suitable habitat for H. forskaolii from 4.26% in the 2030s to 19.09% in the 2090s. Therefore, given the challenges posed by climate change, research efforts should focus on identifying and evaluating new technologies that can help the H. forskaolii species in adapting and mitigating the effects of climate change.

Publisher

Springer Science and Business Media LLC

Reference74 articles.

1. Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, e37235 (2012).

2. Garratt, M. P. D. et al. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184, 34–40 (2014).

3. Klein, A. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

4. Jacobs, F. J., Simoens, C., De Graaf, D. C. & Deckers, J. Scope for non-wood forest products income generation from rehabilitation areas: Focus on beekeeping Scope for non-wood forest products income generation from rehabilitation areas: Focus on beekeeping. J. Drylands 1, 171–185 (2006).

5. Adi, A., Wakjira, K., Kelbessa, E. & Bezabeh, A. Honeybee Forages of Ethiopia (Holeta Bee Research Center, 2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3