Pseudo-Static Gain Cell of Embedded DRAM for Processing-in-Memory in Intelligent IoT Sensor Nodes

Author:

Kim SubinORCID,Park Jun-EunORCID

Abstract

This paper presents a pseudo-static gain cell (PS-GC) with extended retention time for an embedded dynamic random-access memory (eDRAM) macro for analog processing-in-memory (PIM). The proposed eDRAM cell consists of a two-transistor (2T) gain cell with a pseudo-static leakage compensation that maintains stored data without charge loss issue. Hence, the PS-GC can offer unlimited retention time in the same manner as static RAM (SRAM). Due to the extended retention time, bulky capacitors in conventional eDRAM are no longer needed, thereby, improving the area efficiency of eDRAM-based analog PIMs. The active leakage compensation of the PS-GC can effectively hold stored data even in a deep-submicron process that show significant leakage current. Therefore, the PS-GC can accelerate write-access time and read-access time without concern of increased leakage current. The proposed gain cell and its 64 × 64 eDRAM macro were implemented in a 28 nm CMOS process. The bitcell of the proposed gain cell has 0.79- and 0.58-times the area of those of 6T SRAM and 8T STAM, respectively. The post-layout simulation results demonstrate that the eDRAM maintains the pseudo-static operation with unlimited retention time successfully under wide range variations of process, voltage and temperature. At the operating frequency of 667 MHz, the eDRAM macro achieved an operating voltage range from 0.9 to 1.2 V and operating temperature range from −25 to 85 °C regardless of the process variation. The post-layout simulated write-access time and read-access time were below 0.3 ns at an operating temperature of 85 °C. The PS-GC consumes a static power of 2.2 nW/bit at an operating temperature of 25 °C.

Funder

Chungnam National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3