An N-Type Pseudo-Static eDRAM Macro with Reduced Access Time for High-Speed Processing-in-Memory in Intelligent Sensor Hub Applications

Author:

Kim Subin1ORCID,Jeong Ingu2,Park Jun-Eun23ORCID

Affiliation:

1. LX Semicon, Seoul 06763, Republic of Korea

2. Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

3. Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

This paper introduces an n-type pseudo-static gain cell (PS-nGC) embedded within dynamic random-access memory (eDRAM) for high-speed processing-in-memory (PIM) applications. The PS-nGC leverages a two-transistor (2T) gain cell and employs an n-type pseudo-static leakage compensation (n-type PSLC) circuit to significantly extend the eDRAM’s retention time. The implementation of a homogeneous NMOS-based 2T gain cell not only reduces write access times but also benefits from a boosted write wordline technique. In a comparison with the previous pseudo-static gain cell design, the proposed PS-nGC exhibits improvements in write and read access times, achieving 3.27 times and 1.81 times reductions in write access time and read access time, respectively. Furthermore, the PS-nGC demonstrates versatility by accommodating a wide supply voltage range, spanning from 0.7 to 1.2 V, while maintaining an operating frequency of 667 MHz. Fabricated using a 28 nm complementary metal oxide semiconductor (CMOS) process, the prototype features an efficient active area, occupying a mere 0.284 µm2 per bitcell for the 4 kb eDRAM macro. Under various operational conditions, including different processes, voltages, and temperatures, the proposed PS-nGC of eDRAM consistently provides speedy and reliable read and write operations.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3