Identification of Phenolics Profile in Freeze-Dried Apple Peel and Their Bioactivities during In Vitro Digestion and Colonic Fermentation

Author:

Zahid Hafza Fasiha,Ali AkhtarORCID,Ranadheera Chaminda SenakaORCID,Fang ZhongxiangORCID,Ajlouni SaidORCID

Abstract

Freeze-dried apple peel powder (Fd-APP) was subjected to in vitro digestion and colonic fermentation to evaluate the variations in its phenolic composition, bioactivities (antioxidant activity, α-amylase, and α-glucosidase inhibition), and fecal metabolic outputs. A total of 88 phenolics were tentatively identified, of which 51 phenolic compounds were quantitated in Fd-APP sample extracts before digestion, and 34 were released during subsequent phases of digestion. Among these, phenolic acids showed the highest bio accessibility index (BI) of 68%, followed by flavonoids (63%) and anthocyanins (52%). The inhibitory functions of Fd-APP extract against α-amylase and α-glucosidase pre- and post-digestion were moderate and ranged from 41.88 to 44.08% and 35.23 to 41.13%, respectively. Additionally, the antioxidant activities revealed a significant (p ≤ 0.05) decline during the in vitro digestion. However, the colonic fermentation stage presented different products where the intact parent phenolic compounds present in Fd-APP were utilized by gut microbes and produced various phenolic metabolites such as 3- hydroxyphenyl acetic acid (3-HPAA), ferulic acid (FA), 3-(4-hydroxyphenyl) propionic acid (3,4 HPPA) and 4- hydroxybenzoic acid (4-HBA). Furthermore, colonic fermentation of Fd-APP accelerated the production of short-chain fatty acids (SCFAs), with acetic acid being the most prevalent (97.53 ± 9.09 mM). The decrease in pH of fermentation media to 4.3 significantly (p ≤ 0.05) enhanced counts of Bifidobacterium (10.27 log CFU/mL), which demonstrated the potential prebiotic effects of Fd-APP. These findings indicated that the consumption of apple peel as a constituent of novel functional foods may support and protect the intestinal microbiota and consequently promote human health.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3