Abstract
On the basis of binary perfectly inelastic collision theory, the time evolutions of kinetic energy and surface area for a particle agglomerate system, due to Brownian motion, are investigated by using the Taylor series expansion technology. The asymptotic behaviors over a long time period show a significantly negative power function of time. The thermodynamic constraints of this system are then obtained according to the principle of maximum entropy, which establishes a relationship of inequality between the first three particle moments and some physical parameters (i.e., surface tension and temperature). In the thermodynamic equilibrium state, this function provides a new approach for estimating the effect of molecular structure on surface tension of liquid polymers.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献