Abstract
Population balance modeling is an established framework to describe the dynamics of particle populations in disperse phase systems found in a broad field of industrial, civil, and medical applications. The resulting population balance equations account for the dynamics of the number density distribution functions and represent (systems of) partial differential equations which require sophisticated numerical solution techniques due to the general lack of analytical solutions. A specific class of solution algorithms, so-called moment methods, is based on the reduction of complex models to a set of ordinary differential equations characterizing dynamics of integral quantities of the number density distribution function. However, in general, a closed set of moment equations is not found and one has to rely on approximate closure methods. In this contribution, a concise overview of the most prominent approximate moment methods is given.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献