A kinetic, isotherm adsorption, and thermodynamic study of Congo red coagulation using Leucaena crude extract as natural coagulant

Author:

Kristianto Hans1ORCID,Manurung Natasa1,Wardhani Irene Kusuma1,Prasetyo Susiana1,Sugih Asaf K.1,Arbita Ariestya A.1ORCID

Affiliation:

1. 1 Department of Chemical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University, Ciumbuleuit 94, Bandung, West Java 40141, Indonesia

Abstract

Abstract The utilization of various natural resources as coagulant to treat various types of water and wastewater has seen considerable growth in recent years. The coagulation mechanism of natural coagulant is commonly charge neutralization followed by adsorption during the floc growth. However, due to lack of information, further investigation into the nature of the coagulation mechanism is needed. In this study, the coagulation of Congo red synthetic wastewater using crude leucaena extract was investigated at various initial Congo red concentrations (50–100 mg/L) and coagulation temperatures ranging from 30 to 50 °C. Furthermore, the nature of coagulation was investigated using various adsorption isotherms (the Langmuir, Freundlich, Temkin, and Brunauer-Emmet-Teller models) and kinetic models (pseudo-first, pseudo-second, Elovich, and intraparticle models). It was found that the Congo red concentrations, coagulation temperatures, and their interaction are significant to the dye removal. The sedimentation was well described by the pseudo-second order kinetic model, and the coagulation process followed the Langmuir isotherm. This indicates that the coagulation process involved chemisorption with monolayer formation on the coagulant. Moreover, the thermodynamic study shows that the coagulation was both endothermic and spontaneous.

Funder

Parahyangan Catholic University’s Centre of Research and Community Service

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3