Abstract
In this paper, the dynamic evolution of nanoparticles in a turbulent Taylor–Couette flow was studied by means of a numerical simulation. The initial particle size was 200 nm, and the volume concentration was 1 × 10−5. The Reynolds-averaged N–S equation for Taylor–Couette flow was solved numerically using the realizable k-ε model combined with the standard wall function. The numerical result of the velocity distribution is in good agreement with the experimental results. Additionally, the dynamic equation for the particle number distribution function was solved numerically using the Taylor series expansion moment method (TEMOM). The variation characteristics of particle number density, diameter and polydispersity in the flow were analyzed. The results show that particle breakage is obvious in the region with strong vorticity due to the large shear strength, which leads to a significant change in the particle number density, diameter and polydispersity. Furthermore, the effects of the gap width between two cylinders and the Reynolds number on the distribution of the particle number density, size and polydispersity are discussed.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献