Sequential Data Fusion Techniques for the Authentication of the P.G.I. Senise (“Crusco”) Bell Pepper

Author:

Biancolillo AlessandraORCID,Di Donato FrancescaORCID,Merola Francesco,Marini FedericoORCID,D’Archivio Angelo AntonioORCID

Abstract

Bell pepper is the common name of the berry obtained from some varieties of the Capsicum annuum species. This agro-food is appreciated all over the world and represents one of the key ingredients of several traditional dishes. It is used as a fresh product, or dried and ground as a seasoning (e.g., paprika). Specific varieties of sweet pepper present organoleptic peculiarities and they have been awarded by quality marks as a further confirmation of their unicity (e.g., Piment d’Espelette, Pimiento de Herbón, Peperone di Senise). Due to the market value of this aliment, it can be subjected to frauds, such as adulterations and sophistication. The present study lays on these considerations and aims at developing a spectroscopy-based approach for authenticating Senise bell pepper and for detecting its adulteration with common paprika. In order to achieve this goal, 60 pure samples of bell pepper from Senise were analyzed by mid- and near-infrared spectroscopies. Then, in order to mimic the adulteration, 40 mixtures of Senise bell pepper and paprika were prepared and analyzed (by the same spectroscopic techniques). Eventually, two different multi-block classification approaches (sequential and orthogonalized partial least squares linear discriminant analysis and sequential and orthogonalized covariance selection linear discriminant analysis) were used to discriminate between pure and adulterated Senise bell pepper samples. Both proposed procedures achieved extremely successful results in external validation, correctly classifying all the (thirty-five) test samples, indicating that both approaches represent a winning solution for the investigated classification problem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3