Abstract
Bell pepper is the common name of the berry obtained from some varieties of the Capsicum annuum species. This agro-food is appreciated all over the world and represents one of the key ingredients of several traditional dishes. It is used as a fresh product, or dried and ground as a seasoning (e.g., paprika). Specific varieties of sweet pepper present organoleptic peculiarities and they have been awarded by quality marks as a further confirmation of their unicity (e.g., Piment d’Espelette, Pimiento de Herbón, Peperone di Senise). Due to the market value of this aliment, it can be subjected to frauds, such as adulterations and sophistication. The present study lays on these considerations and aims at developing a spectroscopy-based approach for authenticating Senise bell pepper and for detecting its adulteration with common paprika. In order to achieve this goal, 60 pure samples of bell pepper from Senise were analyzed by mid- and near-infrared spectroscopies. Then, in order to mimic the adulteration, 40 mixtures of Senise bell pepper and paprika were prepared and analyzed (by the same spectroscopic techniques). Eventually, two different multi-block classification approaches (sequential and orthogonalized partial least squares linear discriminant analysis and sequential and orthogonalized covariance selection linear discriminant analysis) were used to discriminate between pure and adulterated Senise bell pepper samples. Both proposed procedures achieved extremely successful results in external validation, correctly classifying all the (thirty-five) test samples, indicating that both approaches represent a winning solution for the investigated classification problem.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献