Author:
Joo ,Shin ,Jung ,Cha ,Nam ,Kwon
Abstract
Numerous studies have addressed the utilization of oxide thin-film transistor (TFT)-based complementary logic circuits that are based on two-dimensional (2D) planar structures. However, there are fundamental limits to the 2D planar structured complementary logic circuits, such as a large dimension and a large parasitic resistance. This work demonstrated a vertically stacked three-dimensional complementary inverter composed of a p-channel tin monoxide (SnO) TFT and an n-channel indium-gallium-zinc oxide (IGZO) TFT. A bottom-gate p-channel SnO TFT was formed on the top-gate n-channel IGZO TFT with a shared common gate electrode. The fabricated vertically stacked complementary inverter exhibited full swing characteristics with a voltage gain of ~33.6, a high noise margin of 3.13 V, and a low noise margin of 3.16 V at a supplied voltage of 10 V. The achieved voltage gain of the fabricated complementary inverter was higher than that of the vertically stacked complementary inverters composed of other oxide TFTs in previous works. In addition, we showed that the vertically stacked complementary inverter exhibited excellent visible-light photoresponse. This indicates that the oxide TFT-based vertically stacked complementary inverter can be used as a sensitive photo-sensor operating in the visible spectral range with the voltage read-out scheme.
Funder
National Research Foundation of Korea
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献