Quality Control and Structural Assessment of Anisotropic Scintillating Crystals

Author:

Montalto Luigi,Natali Pier,Scalise LorenzoORCID,Paone Nicola,Davì FabrizioORCID,Rinaldi DanieleORCID,Barucca GianniORCID,Mengucci PaoloORCID

Abstract

Nowadays, radiation detectors based on scintillating crystals are used in many different fields of science like medicine, aerospace, high-energy physics, and security. The scintillating crystals are the core elements of these devices; by converting high-energy radiation into visible photons, they produce optical signals that can be detected and analyzed. Structural and surface conditions, defects, and residual stress states play a crucial role in their operating performance in terms of light production, transport, and extraction. Industrial production of such crystalline materials is a complex process that requires sensing, in-line and off-line, for material characterization and process control to properly tune the production parameters. Indeed, the scintillators’ quality must be accurately assessed during their manufacture in order to prevent malfunction and failures at each level of the chain, optimizing the production and utilization costs. This paper presents an overview of the techniques used, at various stages, across the crystal production process, to assess the quality and structural condition of anisotropic scintillating crystals. Different inspection techniques (XRD, SEM, EDX, and TEM) and the non-invasive photoelasticity-based methods for residual stress detection, such as laser conoscopy and sphenoscopy, are presented. The use of XRD, SEM, EDX, and TEM analytical methods offers detailed structural and morphological information. Conoscopy and sphenoscopy offer the advantages of fast and non-invasive measurement suitable for the inspection of the whole crystal quality. These techniques, based on different measurement methods and models, provide different information that can be cross-correlated to obtain a complete characterization of the scintillating crystals. Inspection methods will be analyzed and compared to the present state of the art.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3