Abstract
AbstractCalcite (CaCO3, trigonal crystal system, space group $$R\overline{3}c$$
R
3
¯
c
) is a ubiquitous carbonate phase commonly found on the Earth’s crust that finds many useful applications in both scientific (mineralogy, petrology, geology) and technological fields (optics, sensors, materials technology) because of its peculiar anisotropic physical properties. Among them, photoelasticity, i.e., the variation of the optical properties of the mineral (including birefringence) with the applied stress, could find usefulness in determining the stress state of a rock sample containing calcite by employing simple optical measurements. However, the photoelastic tensor is not easily available from experiments, and affected by high uncertainties. Here we present a theoretical Density Functional Theory approach to obtain both elastic and photoelastic properties of calcite, considering realistic experimental conditions (298 K, 1 atm). The results were compared with those available in literature, further extending the knowledge of the photoelasticity of calcite, and clarifying an experimental discrepancy in the sign of the p41 photoelastic tensor component measured in past investigations. The methods here described and applied to a well-known crystalline material can be used to obtain the photoelastic properties of other minerals and/or materials at desired pressure and temperature conditions.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Effenberger, H., Zemann, J. & Mereiter, K. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr. New Cryst. Struct. 156(3–4), 233–243 (1981).
2. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394(6691), 348–350 (1998).
3. Herne, C. M., Lyons, F. E., Galvez, E. J. & Sam, A. Polarimetry studies on birefringent materials in optical tweezers. In SPIE (eds Dholakia, K. & Spalding, G. C.) (Springer, 2020).
4. Kang, S. S., Nakamura, N., Fukuda, K., Oikawa, Y. & Obara, Y. Interpretation on stress history of Torigata limestone deposit based on rock stresses measured by three methods. Mem. Fac. Eng. Kumamoto Univ. 45(2 SUPPL. 93), 17–29 (2000).
5. Nye, J. F. Physical Properties of Crystals (Oxford University Press, 1957).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献