Luminescence and Structural Characterization of Gd2O2S Scintillators Doped with Tb3+, Ce3+, Pr3+ and F for Imaging Applications

Author:

De Martinis Alessia,Montalto LuigiORCID,Scalise LorenzoORCID,Rinaldi Daniele,Mengucci PaoloORCID,Michail ChristosORCID,Fountos George,Martini Nicki,Koukou Vaia,Valais IoannisORCID,Bakas Athanasios,Fountzoula ChristineORCID,Kandarakis Ioannis,David StratosORCID

Abstract

Radiodiagnostic technologies are powerful tools for preventing diseases and monitoring the condition of patients. Medicine and sectors such as industry and research all use this inspection methodology. This field demands innovative and more sophisticated systems and materials for improving resolution and sensitivity, leading to a faster, reliable, and safe diagnosis. In this study, a large characterization of gadolinium oxysulfide (Gd2O2S) scintillator screens for imaging applications has been carried out. Seven scintillator samples were doped with praseodymium (Pr3+), terbium (Tb3+) activators and co-doped with praseodymium, cerium, and fluorine (Gd2O2S:Pr,Ce,F). The sample screens were prepared in the laboratory in the form of high packing density screens, following the methodology used in screen sample preparation in infrared spectroscopy and luminescence. Parameters such as quantum detection efficiency (QDE), energy absorption efficiency (EAE), and absolute luminescence efficiency (ALE) were evaluated. In parallel, a structural characterization was performed, via XRD and SEM analysis, for quality control purposes as well as for correlation with optical properties. Spatial resolution properties were experimentally evaluated via the Modulation Transfer Function. Results were compared with published data about Gd2O2S:Pr,Ce,F screens produced with a standard method of a sedimentation technique. In particular, the ALE rose with the X-ray tube voltage up to 100 kVp, while among the different dopants, Gd2O2S:Pr exhibited the highest ALE value. When comparing screens with different thicknesses, a linear trend for the ALE value was not observed; the highest ALE value was measured for the 0.57 mm thick Gd2O2S:Pr,Ce,F sample, while the best MTF values were found in the thinner Gd2O2S:Pr,Ce,F screen with 0.38 mm thickness.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3