Investigation and Optimization of Effects of 3D Printer Process Parameters on Performance Parameters

Author:

Mushtaq Ray Tahir1ORCID,Iqbal Asif2ORCID,Wang Yanen1,Rehman Mudassar1ORCID,Petra Mohd Iskandar2

Affiliation:

1. Bio-Additive Manufacturing University-Enterprise Joint Research Center of Shaanxi Province, Department of Industry Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei

Abstract

Professionals in industries are making progress in creating predictive techniques for evaluating critical characteristics and reactions of engineered materials. The objective of this investigation is to determine the optimal settings for a 3D printer made of acrylonitrile butadiene styrene (ABS) in terms of its conflicting responses (flexural strength (FS), tensile strength (TS), average surface roughness (Ra), print time (T), and energy consumption (E)). Layer thickness (LT), printing speed (PS), and infill density (ID) are all quantifiable characteristics that were chosen. For the experimental methods of the prediction models, twenty samples were created using a full central composite design (CCD). The models were verified by proving that the experimental results were consistent with the predictions using validation trial tests, and the significance of the performance parameters was confirmed using analysis of variance (ANOVA). The most crucial element in obtaining the desired Ra and T was LT, whereas ID was the most crucial in attaining the desired mechanical characteristics. Numerical multi-objective optimization was used to achieve the following parameters: LT = 0.27 mm, ID = 84 percent, and PS = 51.1 mm/s; FS = 58.01 MPa; TS = 35.8 MPa; lowest Ra = 8.01 m; lowest T = 58 min; and E = 0.21 kwh. Manufacturers and practitioners may profit from using the produced numerically optimized model to forecast the necessary surface quality for different aspects before undertaking trials.

Funder

Shaanxi Province Key Research and Development Projects

Science and technology planning project of Xian

Emerging Interdisciplinary Project of Northwestern Polytechnical University

Fundamental Research Funds for the Central Universities

Universiti Brunei Darussalam, Brunei

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3