Steel surface roughness parameter prediction from laser reflection data using machine learning models

Author:

Milne AlexORCID,Xie Xianghua

Abstract

AbstractControl of surface texture in strip steel is essential to meet customer requirements during galvanizing and temper rolling processes. Traditional methods rely on post-production stylus measurements, while on-line techniques offer non-contact and real-time measurements of the entire strip. However, ensuring accurate measurement is imperative for their effective utilization in the manufacturing pipeline. Moreover, accurate on-line measurements enable real-time adjustments of manufacturing processing parameters during production, ensuring consistent quality and the possibility of closed-loop control of the temper mill. In this study, we formulate the manufacturing issue into a Time Series Extrinsic Regression problem and a Machine Vission problem and leverage state-of-the-art machine learning models to enhance the transformation of on-line measurements into a significantly more accurate Ra surface roughness metric. By comparing a selection of data-driven approaches, including both deep learning such as convolutional, recurrent, and transformer networks and non-deep learning methods such as Rocket and XGBoost, to the close-form transformation, we evaluate their potential using Root Mean Squared Error (RMSE) and correlation for improving surface texture control in temper strip steel manufacturing.

Funder

UK Research and Innovation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3