High-Energy Computed Tomography as a Prospective Tool for In Situ Monitoring of Mass Transfer Processes inside High-Pressure Reactors—A Case Study on Ammonothermal Bulk Crystal Growth of Nitrides including GaN

Author:

Schimmel SaskiaORCID,Salamon Michael,Tomida Daisuke,Neumeier SteffenORCID,Ishiguro Tohru,Honda Yoshio,Chichibu Shigefusa F.ORCID,Amano Hiroshi

Abstract

For the fundamental understanding and the technological development of the ammonothermal method for the synthesis and crystal growth of nitrides, an in situ monitoring technique for tracking mass transport of the nitride throughout the entire autoclave volume is desirable. The feasibility of using high-energy computed tomography for this purpose was therefore evaluated using ex situ measurements. Acceleration voltages of 600 kV were estimated to yield suitable transparency in a lab-scale ammonothermal setup for GaN crystal growth designed for up to 300 MPa operating pressure. The total scan duration was estimated to be in the order of 20 to 40 min, which was sufficient given the comparatively slow crystal growth speed in ammonothermal growth. Even shorter scan durations or, alternatively, lower acceleration voltages for improved contrast or reduced X-ray shielding requirements, were estimated to be feasible in the case of ammonoacidic growth, as the lower pressure requirements for this process variant allow for thinned autoclave walls in an adapted setup designed for improved X-ray transparency. Promising nickel-base and cobalt-base alloys for applications in ammonothermal reactors with reduced X-ray absorption in relation to the maximum operating pressure were identified. The applicability for the validation of numerical simulations of the growth process of GaN, in addition to the applicability of the technique to further nitride materials, as well as larger reactors and bulk crystals, were evaluated.

Funder

Alexander von Humboldt Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3