Characterizing Water Composition with an Autonomous Robotic Team Employing Comprehensive In Situ Sensing, Hyperspectral Imaging, Machine Learning, and Conformal Prediction

Author:

Waczak John1ORCID,Aker Adam1ORCID,Wijeratne Lakitha O. H.1ORCID,Talebi Shawhin1ORCID,Fernando Ashen1ORCID,Dewage Prabuddha M. H.1ORCID,Iqbal Mazhar1,Lary Matthew1,Schaefer David1,Lary David J.1ORCID

Affiliation:

1. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

Inland waters pose a unique challenge for water quality monitoring by remote sensing techniques due to their complicated spectral features and small-scale variability. At the same time, collecting the reference data needed to calibrate remote sensing data products is both time consuming and expensive. In this study, we present the further development of a robotic team composed of an uncrewed surface vessel (USV) providing in situ reference measurements and an unmanned aerial vehicle (UAV) equipped with a hyperspectral imager. Together, this team is able to address the limitations of existing approaches by enabling the simultaneous collection of hyperspectral imagery with precisely collocated in situ data. We showcase the capabilities of this team using data collected in a northern Texas pond across three days in 2020. Machine learning models for 13 variables are trained using the dataset of paired in situ measurements and coincident reflectance spectra. These models successfully estimate physical variables including temperature, conductivity, pH, and turbidity as well as the concentrations of blue–green algae, colored dissolved organic matter (CDOM), chlorophyll-a, crude oil, optical brighteners, and the ions Ca2+, Cl−, and Na+. We extend the training procedure to utilize conformal prediction to estimate 90% confidence intervals for the output of each trained model. Maps generated by applying the models to the collected images reveal small-scale spatial variability within the pond. This study highlights the value of combining real-time, in situ measurements together with hyperspectral imaging for the rapid characterization of water composition.

Funder

Texas National Security Network Excellence Fund award for Environmental Sensing Security Sentinels

SOFWERX award for Machine Learning for Robotic Teams

NSF Award

University of Texas at Dallas Office of Sponsored Programs, Dean of Natural Sciences and Mathematics, and Chair of the Physics Department

TRECIS CC* Cyberteam

EPA P3

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3