Unsupervised Characterization of Water Composition with UAV-Based Hyperspectral Imaging and Generative Topographic Mapping

Author:

Waczak John1ORCID,Aker Adam1ORCID,Wijeratne Lakitha O. H.1ORCID,Talebi Shawhin1ORCID,Fernando Ashen1ORCID,Dewage Prabuddha M. H.1ORCID,Iqbal Mazhar1,Lary Matthew1,Schaefer David1,Balagopal Gokul1,Lary David J.1ORCID

Affiliation:

1. Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

Unmanned aerial vehicles equipped with hyperspectral imagers have emerged as an essential technology for the characterization of inland water bodies. The high spectral and spatial resolutions of these systems enable the retrieval of a plethora of optically active water quality parameters via band ratio algorithms and machine learning methods. However, fitting and validating these models requires access to sufficient quantities of in situ reference data which are time-consuming and expensive to obtain. In this study, we demonstrate how Generative Topographic Mapping (GTM), a probabilistic realization of the self-organizing map, can be used to visualize high-dimensional hyperspectral imagery and extract spectral signatures corresponding to unique endmembers present in the water. Using data collected across a North Texas pond, we first apply GTM to visualize the distribution of captured reflectance spectra, revealing the small-scale spatial variability of the water composition. Next, we demonstrate how the nodes of the fitted GTM can be interpreted as unique spectral endmembers. Using extracted endmembers together with the normalized spectral similarity score, we are able to efficiently map the abundance of nearshore algae, as well as the evolution of a rhodamine tracer dye used to simulate water contamination by a localized source.

Funder

Texas National Security Network Excellence Fund award for Environmental Sensing Security Sentinels

SOFWERX

NSF

University of Texas at Dallas Office of Sponsored Programs

Dean of Natural Sciences and Mathematics

Chair of the Physics Department

TRECIS CC* Cyberteam

EPA P3

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3