Pyramid Cascaded Convolutional Neural Network with Graph Convolution for Hyperspectral Image Classification

Author:

Pan Haizhu12,Yan Hui1,Ge Haimiao12ORCID,Wang Liguo3,Shi Cuiping4ORCID

Affiliation:

1. College of Computer and Control Engineering, Qiqihar University, Qiqihar 161000, China

2. Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar 161000, China

3. College of Information and Communication Engineering, Dalian Nationalities University, Dalian 116000, China

4. College of Telecommunication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China

Abstract

Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have made considerable advances in hyperspectral image (HSI) classification. However, most CNN-based methods learn features at a single-scale in HSI data, which may be insufficient for multi-scale feature extraction in complex data scenes. To learn the relations among samples in non-grid data, GCNs are employed and combined with CNNs to process HSIs. Nevertheless, most methods based on CNN-GCN may overlook the integration of pixel-wise spectral signatures. In this paper, we propose a pyramid cascaded convolutional neural network with graph convolution (PCCGC) for hyperspectral image classification. It mainly comprises CNN-based and GCN-based subnetworks. Specifically, in the CNN-based subnetwork, a pyramid residual cascaded module and a pyramid convolution cascaded module are employed to extract multiscale spectral and spatial features separately, which can enhance the robustness of the proposed model. Furthermore, an adaptive feature-weighted fusion strategy is utilized to adaptively fuse multiscale spectral and spatial features. In the GCN-based subnetwork, a band selection network (BSNet) is used to learn the spectral signatures in the HSI using nonlinear inter-band dependencies. Then, the spectral-enhanced GCN module is utilized to extract and enhance the important features in the spectral matrix. Subsequently, a mutual-cooperative attention mechanism is constructed to align the spectral signatures between BSNet-based matrix with the spectral-enhanced GCN-based matrix for spectral signature integration. Abundant experiments performed on four widely used real HSI datasets show that our model achieves higher classification accuracy than the fourteen other comparative methods, which shows the superior classification performance of PCCGC over the state-of-the-art methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3