Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean

Author:

Aurin Dirk,Mannino Antonio,Lary David

Abstract

A Global Ocean Carbon Algorithm Database (GOCAD) has been developed from over 500 oceanographic field campaigns conducted worldwide over the past 30 years including in situ reflectances and coincident satellite imagery, multi- and hyperspectral Chromophoric Dissolved Organic Matter (CDOM) absorption coefficients from 245–715 nm, CDOM spectral slopes in eight visible and ultraviolet wavebands, dissolved and particulate organic carbon (DOC and POC, respectively), and inherent optical, physical, and biogeochemical properties. From field optical and radiometric data and satellite measurements, several semi-analytical, empirical, and machine learning algorithms for retrieving global DOC, CDOM, and CDOM slope were developed, optimized for global retrieval, and validated. Global climatologies of satellite-retrieved CDOM absorption coefficient and spectral slope based on the most robust of these algorithms lag seasonal patterns of phytoplankton biomass belying Case 1 assumptions, and track terrestrial runoff on ocean basin scales. Variability in satellite retrievals of CDOM absorption and spectral slope anomalies are tightly coupled to changes in atmospheric and oceanographic conditions associated with El Niño Southern Oscillation (ENSO), strongly covary with the multivariate ENSO index in a large region of the tropical Pacific, and provide insights into the potential evolution and feedbacks related to sea surface dissolved carbon in a warming climate. Further validation of the DOC algorithm developed here is warranted to better characterize its limitations, particularly in mid-ocean gyres and the southern oceans.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3