Abstract
Landslide inventory and deformation monitoring is an essential task for human life and property security during the exploitation process of hydroelectric power resources. Synthetic Aperture Radar Interferometry (InSAR) is recognized as an effective tool for ground displacement monitoring with the advantages of wide coverage and high accuracy. In this study, we mapped the unstable slopes in the downstream of the Niulanjiang River with 22 ALOS PALSAR SAR images acquired from 2007 to 2011, and 90 Sentinel-1 SAR images from 2015 to 2019. A total of 94 active slopes are identified using a displacement map from the two datasets based on Small BAseline Subset (SBAS) InSAR analysis. By comparing the results from ALOS PALSAR and Sentinel-1 data stacks, we find that the number of active slopes increased dramatically. Several impact factors, e.g., earthquake, concentrated rainfall, and construction of hydropower stations, are discussed through time series analysis of typical landslides. Furthermore, nonlinear displacement of natural unstable slopes are found to be correlated with rainfall. A climate-driven model is used to qualify the relationship between rainfall and landslide displacement. Our results can provide valuable information for landslide detection and prevention.
Subject
General Earth and Planetary Sciences
Reference45 articles.
1. Evaluation and Prediction of Landslide Induced by Rainfall and Reservoir;Huang,2007
2. Research of critical displacement method for earthquake-induced landslides;Xin;Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering,2011
3. Numerical analysis of a large landslide induced by coal mining subsidence
4. National level assessment of using existing airport infrastructures for photovoltaic deployment
5. Prospects and problems of concentrating solar power technologies for power generation in the desert regions
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献