Refined landslide inventory and susceptibility of Weining County, China, inferred from machine learning and Sentinel‐1 InSAR analysis

Author:

Shi Xuguo1ORCID,Chen Dianqiang1,Wang Jianing1,Wang Pan1,Wu Yunlong12,Zhang Shaocheng1,Zhang Yi2,Yang Chen3,Wang Lunche1

Affiliation:

1. School of Geography and Information Engineering China University of Geosciences Wuhan China

2. Key Laboratory of Geological Survey and Evaluation of Ministry of Education China University of Geosciences Wuhan China

3. Institute of Karst Geology CAGS/Key Laboratory of Karst Dynamics, MNR&GZAR Guilin China

Abstract

AbstractLandslides are widely distributed mountainous geological hazards that threaten economic development and people's daily lives. Interferometric synthetic aperture radar (InSAR) with comprehensive coverage and high‐precision ground displacement monitoring abilities are frequently utilized for regional‐scale active slope detection. Moreover, InSAR measurements that characterize ground dynamics are integrated with conventional topographic, hydrological, and geological landslide conditioning factors (LCFs) for landslide susceptibility mapping (LSM). Weining County in southwest China, with complex geological conditions, steep terrain, and frequent tectonic activities, is prone to catastrophic landslide failures. In this study, we refined the landslide inventory of Weining County using one ascending and one descending Sentinel‐1 dataset acquired during 2015–2021 through a small baseline subset InSAR (SBAS InSAR) analysis. We then combine the LOS measurements from both datasets using multidimensional SBAS to obtain time series two‐dimensional (2D) displacements to characterize the kinematics of active slopes. Hot spot and cluster analysis (HCA) was carried out on 2D displacement rate maps to highlight clustered deformed areas and suppress noisy signals that occurred on single pixels. Two hundred fifty‐eight landslides (including 71 active identified in this study) are used to construct 76,412 positive samples for LSM. In our study, the HCA maps, instead of the 2D displacement maps, are integrated with conventional LCFs to form an LCF_HCA set to feed support vector machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost) and Light Gradient‐Boosting Machine (LightGBM) models. A conventional LCF (LCF_CON) set and an integrated 2D displacement maps (LCF_2D) set have also been adapted for comparison. The performance of the tree‐based ensemble methods distinctly outperforms the SVM model. In the meantime, models' performances using the LCF_HCA set are superior to that of the other 2 LCF sets from all evaluation metrics. The ranks of HCA maps increased compared with 2D displacement maps from feature importance analysis, which might lead to the better performance of models using the LCF_HCA set. With the continuous accumulation of SAR images, ground dynamic characteristics from InSAR can offer us opportunities to understand landslide kinematics and enhance LSM.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3