Automatic recognition of active landslides by surface deformation and deep learning

Author:

Wang Xianmin1234ORCID,Chen Wenxue1,Ren Haifeng1,Guo Haixiang4

Affiliation:

1. Hubei Subsurface Multi-scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China

2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China

3. Key Laboratory of Geological and Evaluation of Ministry of Education, China University of Geosciences, Wuhan, China

4. Laboratory of Natural Disaster Risk Prevention and Emergency Management, School of Economics and Management, China University of Geosciences, Wuhan, China

Abstract

Catastrophic landslides are generally evolved from potential active landslides, and early identification of active landslides over an extensive region is vital to effective prevention and control of disastrous landslides in urban areas. Interferometric Synthetic Aperture Radar (InSAR) has immense potential in mapping active landslides. However, artificial interpretation of InSAR measurements and manual recognition of active landslides are very laborious and time-consuming, with a relatively high missing and false alarms. That hinders the application of InSAR technique and the identification of active landslides in wide areas. Automatic recognition of active landslides has always been a great challenge and has been relatively rarely investigated by previous studies. This work establishes comprehensive identification indices of geoenvironmental, disaster-triggering, and surface deformation features. Moreover, it suggests a novel deep learning algorithm of SDeepFM to conduct automatic identification of active landslides across a vast and landslide-serious area of Hualong County. Some new viewpoints are suggested as follows. (1) The identification indices consist of disaster-controlling, disaster-inducing, and active deformation characteristics and are constructed in terms of the cause characteristics of active landslides. Thus, it can effectively decrease the false alarms of active landslide identification. (2) The proposed SDeepFM algorithm features a spatial-perception ability and can adequately extract and fuse the low-level and high-level semantic features. It outperforms the classification and regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and deep neural network (DNN) algorithms. The test accuracy attains 0.91, 99.73%, 90.21%, 0.92, 0.96, and 0.91 in F1-score, Accuracy, Precision, Recall, AUC, and Kappa, respectively. (3) A total of 164 active landslides are exactly recognized, and 39 active landslides are newly identified in this work. (4) In Hualong County, the characteristics of slope deformation, spatial context, lithology, tectonic movement, human activity, and topography play important roles in active landslide identification. River distribution and rainfall also contribute to active landslide recognition.

Funder

Fundamental Research Funds for the Central Universities, China University of Geosciences

National Natural Science Foundation of China

Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education

State Key Laboratory of Biogeology and Environmental Geology

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3