Hyperspectral Identification of Ginseng Growth Years and Spectral Importance Analysis Based on Random Forest

Author:

Zhao Limin,Liu Shumin,Chen XingfengORCID,Wu Zengwei,Yang Rui,Shi Tingting,Zhang Yunli,Zhou Kaiwen,Li Jiaguo

Abstract

The growth year of ginseng is very important as it affects its economic value and even defines if ginseng can be used as medicine or food. In the case of large-scale developments in the ginseng industry, a set of non-destructive, fast, and nonprofessional operations related to the growth year identification method is needed. The characteristics of ginseng reflectance spectral data were analyzed, and the growth year recognition model was constructed by a decision-tree-based random forest machine learning method. After independent verification, the accuracy of distinguishing ginseng food and medicine can reach 92.9%, with 6-year growth as the boundary, and 100%, with 5-year growth as the boundary. The research results show that the spectral change of ginseng is the most obvious in the fifth year, which provides a reference for the key research years based on chemical analyses and other methods. For the application of growth year recognition, the NIR band (1000–2500 nm) had little contribution to the recognition of ginseng growth years, and the band with the largest contribution was 400–650 nm. The recognition model based on machine learning provides a non-destructive, fast, and simple scheme with high accuracy for ginseng year recognition, and the spectral importance analysis conclusion of ginseng growth years provides a design reference for the development of special lightweight spectral equipment for year recognition.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3