Comparative Analysis of Machine Learning and Deep Learning Algorithms for Assessing Agricultural Product Quality Using NIRS

Author:

Ren Jiwen1,Xiong Yuming1,Chen Xinyu2,Hao Yong1ORCID

Affiliation:

1. School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. Optoelectronics Department of Changzhou Institute of Technology, Changzhou 213000, China

Abstract

The success of near-infrared spectroscopy (NIRS) analysis hinges on the precision and robustness of the calibration model. Shallow learning (SL) algorithms like partial least squares discriminant analysis (PLS-DA) often fall short in capturing the interrelationships between adjacent spectral variables, and the analysis results are easily affected by spectral noise, which dramatically limits the breadth and depth of applications of NIRS. Deep learning (DL) methods, with their capacity to discern intricate features from limited samples, have been progressively integrated into NIRS. In this paper, two discriminant analysis problems, including wheat kernels and Yali pears as examples, and several representative calibration models were used to research the robustness and effectiveness of the model. Additionally, this article proposed a near-infrared calibration model, which was based on the Gramian angular difference field method and coordinate attention convolutional neural networks (G-CACNNs). The research results show that, compared with SL, spectral preprocessing has a smaller impact on the analysis accuracy of consensus learning (CL) and DL, and the latter has the highest analysis accuracy in the modeling results using the original spectrum. The accuracy of G-CACNNs in two discrimination tasks was 98.48% and 99.39%. Finally, this research compared the performance of various models under noise to evaluate the robustness and noise resistance of the proposed method.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3