The Influence of Signal to Noise Ratio of Legacy Airborne and Satellite Sensors for Simulating Next-Generation Coastal and Inland Water Products

Author:

Kudela Raphael M.,Hooker Stanford B.,Houskeeper Henry F.ORCID,McPherson Meredith

Abstract

Presently, operational ocean color satellite sensors are designed with a legacy perspective for sampling the open ocean primarily in the visible domain, while high spatial resolution sensors such as Sentinel-2, Sentinel-3, and Landsat8 are increasingly used for observations of coastal and inland water quality. Next-generation satellites such as the NASA Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) and Surface Biology and Geology (SBG) sensors are anticipated to increase spatial and/or spectral resolution. An important consideration is determining the minimum signal-to-noise ratio (SNR) needed to retrieve typical biogeochemical products, such as biomass, in aquatic systems, and whether legacy sensors can be used for algorithm development. Here, we evaluate SNR and remote-sensing reflectance (Rrs) uncertainty for representative bright and dim targets in coastal California, USA. The majority of existing sensors fail to meet proposed criteria. Despite these limitations, uncertainties in retrieved biomass as chlorophyll or normalized difference vegetation index (NDVI) remain well below a proposed threshold of 17.5%, suggesting that existing sensors can be used in coastal systems. Existing commercially available in-water and airborne instrument suites can exceed all proposed thresholds for SNR and Rrs uncertainty, providing a path forward for collection of calibration and validation data for future satellite missions.

Funder

National Aeronautics and Space Administration

California State Water Resources Control Board

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters,2000

2. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

3. The Coastal Zone—A Domain of Global Interactions;Crossland,2005

4. Assessing the Requirements for Sustained Ocean Color Research and Operations,2011

5. Thriving on Our Changing Planet

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3