Expanded Signal to Noise Ratio Estimates for Validating Next-Generation Satellite Sensors in Oceanic, Coastal, and Inland Waters

Author:

Kudela Raphael M.1ORCID,Hooker Stanford B.2,Guild Liane S.3ORCID,Houskeeper Henry F.4ORCID,Taylor Niky5

Affiliation:

1. Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA

2. NASA Goddard Space Flight Center Code 616.2 Bldg. 28 Rm. W120D, Greenbelt, MD 20771, USA

3. Biospheric Science Branch, Earth Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

4. Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

5. U.S. Geological Survey Western Geographic Science Center, 350 N. Akron Rd., Moffett Field, CA 94035, USA

Abstract

The launch of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the Surface Biology and Geology (SBG) satellite sensors will provide increased spectral resolution compared to existing platforms. These new sensors will require robust calibration and validation datasets, but existing field-based instrumentation is limited in its availability and potential for geographic coverage, particularly for coastal and inland waters, where optical complexity is substantially greater than in the open ocean. The minimum signal-to-noise ratio (SNR) is an important metric for assessing the reliability of derived biogeochemical products and their subsequent use as proxies, such as for biomass, in aquatic systems. The SNR can provide insight into whether legacy sensors can be used for algorithm development as well as calibration and validation activities for next-generation platforms. We extend our previous evaluation of SNR and associated uncertainties for representative coastal and inland targets to include the imaging sensors PRISM and AVIRIS-NG, the airborne-deployed C-AIR radiometers, and the shipboard HydroRad and HyperSAS radiometers, which were not included in the original analysis. Nearly all the assessed hyperspectral sensors fail to meet proposed criteria for SNR or uncertainty in remote sensing reflectance (Rrs) for some part of the spectrum, with the most common failures (>20% uncertainty) below 400 nm, but all the sensors were below the proposed 17.5% uncertainty for derived chlorophyll-a. Instrument suites for both in-water and airborne platforms that are capable of exceeding all the proposed thresholds for SNR and Rrs uncertainty are commercially available. Thus, there is a straightforward path to obtaining calibration and validation data for current and next-generation sensors, but the availability of suitable high spectral resolution sensors is limited.

Funder

HyspIRI Airborne Preparatory Campaign

C-HARRIER Campaign

NASA

California State Water Resources Control Board

Publisher

MDPI AG

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3