Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing

Author:

Qamar Farid,Dobler Gregory

Abstract

AbstractBackgroundVegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths (VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures of spectral components that include the vegetation reflectance, atmospheric attenuation, top-of-atmosphere solar irradiance, and sensor artifacts. Common methods for the extraction of spectral reflectance from the at-sensor spectral radiance offer a trade-off between explicit knowledge of atmospheric conditions and concentrations, computational efficiency, and prediction accuracy, and are generally geared towards nadir pointing platforms. Therefore, a method is needed for the accurate extraction of vegetation reflectance from spectral radiance captured by ground-based remote sensors with a side-facing orientation towards the target, and a lack of knowledge of the atmospheric parameters.ResultsWe propose a framework for obtaining the vegetation spectral reflectance from at-sensor spectral radiance, which relies on a time-dependent Encoder-Decoder Convolutional Neural Network trained and tested using simulated spectra generated from radiative transfer modeling. Simulated at-sensor spectral radiance are produced from combining 1440 unique simulated solar angles and atmospheric absorption profiles, and 1000 different spectral reflectance curves of vegetation with various health indicator values, together with sensor artifacts. Creating an ensemble of 10 models, each trained and tested on a separate 10% of the dataset, results in the prediction of the vegetation spectral reflectance with a testing r2of 98.1% (±0.4). This method produces consistently high performance with accuracies >90% for spectra with resolutions as low as 40 channels in VNIR each with 40 nm full width at half maximum (FWHM) and greater, and remains viable with accuracies >80% down to a resolution of 10 channels with 60 nm FWHM. When applied to real sensor obtained spectral radiance data, the predicted spectral reflectance curves showed general agreement and consistency with those corrected by the Compound Ratio method.ConclusionsWe propose a method that allows for the accurate estimation of the vegetation spectral reflectance from ground-based HSI platforms with sufficient spectral resolution. It is capable of extracting the vegetation spectral reflectance at high accuracy in the absence of knowledge of the exact atmospheric compositions and conditions at time of capture, and the lack of available sensor-measured spectral radiance and their true ground-truth spectral reflectance profiles.

Funder

James S. McDonnell Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3