V2X Communication between Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs)

Author:

Kavas-Torris OzgenurORCID,Gelbal Sukru Yaren,Cantas Mustafa Ridvan,Aksun Guvenc Bilin,Guvenc LeventORCID

Abstract

Connectivity between ground vehicles can be utilized and expanded to include aerial vehicles for coordinated missions. Using Vehicle-to-Everything (V2X) communication technologies, a communication link can be established between Connected and Autonomous vehicles (CAVs) and Unmanned Aerial vehicles (UAVs). Hardware implementation and testing of a ground-to-air communication link are crucial for real-life applications. In this paper, the V2X communication and coordinated mission of a CAV & UAV are presented. Four methods were utilized to establish communication between the hardware and software components, namely Dedicated Short Range communication (DSRC), User Datagram Protocol (UDP), 4G internet-based WebSocket and Transmission Control Protocol (TCP). These communication links were used together for a real-life use case scenario called Quick Clear demonstration. In this scenario, the first aim was to send the accident location information from the CAV to the UAV through DSRC communication. On the UAV side, the wired connection between the DSRC modem and Raspberry Pi companion computer was established through UDP to get the accident location from CAV to the companion computer. Raspberry Pi first connected to a traffic contingency management system (CMP) through TCP to send CAV and UAV location, as well as the accident location, information to the CMP. Raspberry Pi also utilized WebSocket communication to connect to a web server to send photos that were taken by the camera that was mounted on the UAV. The Quick Clear demonstration scenario was tested for both a stationary test and dynamic flight cases. The latency results show satisfactory performance in the data transfer speed between test components with UDP having the least latency. The package drop percentage analysis shows that the DSRC communication showed the best performance among the four methods studied here. All in all, the outcome of this experimentation study shows that this communication structure can be utilized for real-life scenarios for successful implementation.

Funder

Ohio Department of Transportation’s Unmanned Aircraft Traffic Management project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3