Automated Vehicles and Infrastructure Enablers: Connectivity

Author:

Coyner Kelley,Bittner Jason

Abstract

<div class="section abstract"><div class="htmlview paragraph">Do connected vehicle (CV) technologies encourage or dampen progress toward widespread deployment of automated vehicles? Would digital infrastructure components be a better investment for safety, mobility, and the environment? Can CVs, coupled with smart infrastructure, provide an effective pathway to further automation? Highly automated vehicles are being developed (albeit slower than predicted) alongside varied, disruptive connected vehicle technology. </div><div class="htmlview paragraph"><b>Automated Vehicles and Infrastructure Enablers: Connectivity</b> looks at the status of CV technology, examines the concerns of automated driving system (ADS) developers and infrastructure owners and operators (IOOs) in relying on connected infrastructure, and assesses lessons learned from the growth of CV applications and improved vehicle-based technology. IOOs and ADS developers agree that cost, communications, interoperability, cybersecurity, operation, maintenance, and other issues undercut efforts to deploy a comprehensive connected infrastructure.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>

Publisher

SAE International

Reference49 articles.

1. Arnott , M. 2022 https://transformainsights.com/blog/connected-cars--iot-5g

2. Placek , M. 2021 https://www.statista.com/topics/1918/connected-cars/

3. Chajka-Cadin , L. , Petrella , M. , Plotnick , S. , and Roycroft , C. 2021 https://rosap.ntl.bts.gov/view/dot/59824

4. Huang , Y. , Wang , Y. , Yan , X. , Li , X. et al. Using a V2V- and V2I-Based Collision Warning System to Improve Vehicle Interaction at Unsignalized Intersections Journal of Safety Research 83 2022 282 293 https://doi.org/10.1016/j.jsr.2022.09.002

5. Wright , J. et al. 2014 https://ntlrepository.blob.core.windows.net/lib/52000/52600/52602/Cnct_Veh_Footprint_20181017.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3