A Neural Network with Physical Mechanism for Predicting Airport Aviation Noise

Author:

Zhu Dan1,Peng Jiayu2,Ding Cong1

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Airport noise prediction models are divided into physics-guided methods and data-driven methods. The prediction results of physics-guided methods are relatively stable, but their overall prediction accuracy is lower than that of data-driven methods. However, machine learning methods have a relatively high prediction accuracy, but their prediction stability is inferior to physics-guided methods. Therefore, this article integrates the ECAC model, driven by aerodynamics and acoustics principles under the framework of deep neural networks, and establishes a physically guided neural network noise prediction model. This model inherits the stability of physics-guided methods and the high accuracy of data-driven methods. The proposed model outperformed physics-driven and data-driven models regarding prediction accuracy and generalization ability, achieving an average absolute error of 0.98 dBA in predicting the sound exposure level. This success was due to the fusion of physics-based principles with data-driven approaches, providing a more comprehensive understanding of aviation noise prediction.

Funder

National Key R&D Program of China

State Key Laboratory of Air Traffic Management System and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3