Statistics and Machine Learning in Aviation Environmental Impact Analysis: A Survey of Recent Progress

Author:

Gao ZhenyuORCID,Mavris Dimitri N.

Abstract

The rapid growth of global aviation operations has made its negative environmental impact an international concern. Accurate modeling of aircraft fuel burn, emissions, and noise is the prerequisite for informing new operational procedures, technologies, and policies towards a more sustainable future of aviation. In the past decade, due to the advances in big data technologies and effective algorithms, the transformative data-driven analysis has begun to play a substantial role in aviation environmental impact analysis. The integration of statistical and machine learning methods in the workflow has made such analysis more efficient and accurate. Through summarizing and classifying the representative works in this intersection area, this survey paper aims to extract prevailing research trends and suggest research opportunities for the future. The methodology overview section presents a comprehensive development process and landscape of statistical and machine learning methods for applied researchers. In the main section, relevant works in the literature are organized into seven application themes: data reduction, efficient computation, predictive modeling, uncertainty quantification, pattern discovery, verification and validation, and infrastructure and tools. Each theme contains background information, in-depth discussion, and a summary of representative works. The paper concludes with the proposal of five future opportunities for this research area.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference134 articles.

1. Waitz, I., Townsend, J., Cutcher-Gershenfeld, J., Greitzer, E., and Kerrebrock, J. (2014). Aviation and the Environment, A National Vision Statement, Framework for Goals and Recommended Actions.

2. FAA (Federal Aviation Administration) (2015). Aviation Emissions, Impacts and Mitigation: A Primer.

3. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018;Lee;Atmos. Environ.,2021

4. Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II;Brasseur;Bull. Am. Meteorol. Soc.,2016

5. Aviation Noise Impacts: State of the Science;Basner;Noise Health,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3