Observability-Driven Path Planning Design for Securing Three-Dimensional Navigation Performance of LiDAR SLAM

Author:

Kim Donggyun1ORCID,Lee Byungjin2ORCID,Sung Sangkyung2

Affiliation:

1. Department of Aerospace Information Engineering, Konkuk University, Seoul, 05029, Republic of Korea

2. Department of Mechanical and Aerospace Engineering, Konkuk University, Seoul, 05029, Republic of Korea

Abstract

This paper presents an efficient method for securing navigation performance by suppressing divergence risk of LiDAR SLAM through a newly proposed geometric observability analysis in a three-dimensional point cloud map. For this, observability characteristics are introduced that quantitatively evaluate the quality of the geometric distribution of the features. To be specific, this study adapts a 3D geometric observability matrix and the associated condition number for developing numerical benefit. In an extensive application, we implemented path planning in which the enhanced SLAM performs smoothly based on the proposed method. Finally, to validate the performance of the proposed algorithm, a simulation study was performed using the high-fidelity Gazebo simulator, where the path planning strategy of a drone depending on navigation quality is demonstrated. Additionally, an indoor autonomous vehicle experimental result is presented to support the effectiveness of the proposed algorithm.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3