Compressor Performance Prediction Based on the Interpolation Method and Support Vector Machine

Author:

Zhong Lingfeng1,Liu Rui1ORCID,Miao Xiaodong1ORCID,Chen Yufeng1,Li Songhong1,Ji Haocheng1

Affiliation:

1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Compressors are important components in various power systems in the field of energy and power. In practical applications, compressors often operate under non-design conditions. Therefore, accurate calculation on performance under various operating conditions is of great significance for the development and application of certain power systems equipped with compressors. To calculate and predict the performance of a compressor under all operating conditions through limited data, the interpolation method was combined with a support vector machine (SVM). Based on the known data points of compressor design conditions, the interpolation method was adopted to obtain training samples of the SVM. In the calculation process, preliminary screening was conducted on the kernel functions of the SVM. Two interpolation methods, including linear interpolation and cubic spline interpolation, were used to obtain sample data. In the subsequent training process of the SVM, the genetic algorithm (GA) was used to optimize its parameters. After training, the available data were compared with the predicted data of the SVM. The results show that the SVM uses the Gaussian kernel function to achieve the highest prediction accuracy. The prediction accuracy of the SVM trained with the data obtained from linear interpolation was higher than that of cubic spline interpolation. Compared with the back propagation neural network optimized by the genetic algorithm (GA-BPNN), the genetic algorithm optimization of extreme learning machine neural network (GA-ELMNN), and the genetic algorithm optimization of generalized regression neural network (GA-GRNN), the support vector machine optimized by the genetic algorithm (GA-SVM) has a better generalization, and GA-SVM is more accurate in predicting boundary data than the GA-BPNN. In addition, reducing the number of original data points still enables the GA-SVM to maintain a high level of predictive accuracy.

Funder

National Natural Science Foundation of China

State Key Laboratory of Engines, Tianjin University

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3