Aerodynamic force prediction of compressor blade surfaces based on machine learning

Author:

Niu YanORCID,Zhao KainuoORCID,Yao MinghuiORCID,Wu QiliangORCID,Yang ShaowuORCID,Ma LiORCID

Abstract

The flow field distribution of compressor blades is critical to the performance of aero-engine. To efficiently obtain the aerodynamic loads on the blades, this study employs machine learning models to predict the aerodynamic characteristics of compressor blade surfaces. The predictive performances of these models are evaluated by applying random forest, multi-layer perceptron (MLP), one-dimensional convolutional neural network, and long short-term memory network based on simulation data of computational fluid dynamics (CFD). The results indicate that the MLP model performs exceptionally well among all test metrics, with its predictions closely matching the CFD simulation results. Further analysis using SHapley Additive exPlanations methods is performed to interpret the MLP model and reveal the importance of various input features. The research demonstrates the significant potential of machine learning methods in predicting the aerodynamics of compressor blades and providing accurate and reliable results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3