Research on the Methods of Predicting Compressor Characteristic Curve

Author:

Hao Xuedi1ORCID,Zhang Zeyuan1ORCID,Chi Jinling1ORCID,He Yangxue1

Affiliation:

1. School of Mechatronics and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Compressors are one of the three major components of gas turbines, and their characteristic curves are used to analyze off-design performance. How to infer the characteristic curve based on different data is an important research topic. In this paper, PG9351FA gas turbine is taken as the research object. Two methods, artificial neural network and parameter estimation, are used to predict its characteristic curve, and the prediction accuracy and application conditions of the two methods are discussed. This article compares the two methods from the perspectives of known speed characteristic curve regression and unknown speed characteristic curve inference, analyzes the impact of sample size and sample error on their inference results, and quantitatively analyzes the error through statistical methods such as calculating the mean square deviation of the data. The application scope and conditions of different methods are provided. The research results show that the method based on neural network to infer the characteristic curve has high accuracy and is suitable for the prediction of known and unknown speed characteristic curves under sufficient data, but not for the prediction of unknown side curves. The elliptic equation fitting method based on parameter estimation has a slightly lower accuracy in processing the nearly vertical compressor characteristic curve, but it can be used as an effective and reliable method to infer the compressor characteristic curve in the case of a small amount of data. The modulization method based on parameter estimation has high accuracy and is applicable to the estimation of complete characteristic curve from partial data of known characteristic curve. In this paper, the application scope and conditions of these two methods are determined, which can provide reference for engineering practice.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3