Classification and prediction of gas turbine gas path degradation based on deep neural networks
Author:
Affiliation:
1. School of Energy and Environment Southeast University Nanjing China
2. Equipment Department Huadian Hangzhou Banshan Power Generation Co., Ltd Hangzhou China
3. Equipment Department Huaneng Gas Turbine Power Generation Co., Ltd Nanjing China
Publisher
Wiley
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/er.6539
Reference33 articles.
1. Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm
2. Gas turbine performance prognostic for condition-based maintenance
3. Modelling micro-turbines using Hammerstein models
4. Modelling of heat transfer and fluid flow in the hot section of gas turbines used in power generation: A comprehensive survey
5. A big data driven sustainable manufacturing framework for condition-based maintenance prediction
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting Steam Turbine Power Generation: A Comparison of Long Short-Term Memory and Willans Line Model;Energies;2024-01-10
2. Research on the Methods of Predicting Compressor Characteristic Curve;International Journal of Energy Research;2023-09-12
3. Evaluation of Turbine Tip Clearance With Performance Degradation Using Multilayer Perceptron;Journal of Engineering for Gas Turbines and Power;2023-07-27
4. Novel aeroengine fault diagnosis method based on feature amplification;Engineering Applications of Artificial Intelligence;2023-06
5. A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics;Applied Energy;2023-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3