An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems

Author:

Cao Fan1,Tang Zhili1,Zhu Caicheng1,Zhao Xin2

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Beijing Aerospace Technology Institute, Beijing 100074, China

Abstract

Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications.

Funder

National Natural Science Foundation of China

Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3