Road Centerline Extraction from Very-High-Resolution Aerial Image and LiDAR Data Based on Road Connectivity

Author:

Zhang Zhiqiang,Zhang Xinchang,Sun Ying,Zhang Pengcheng

Abstract

The road networks provide key information for a broad range of applications such as urban planning, urban management, and navigation. The fast-developing technology of remote sensing that acquires high-resolution observational data of the land surface offers opportunities for automatic extraction of road networks. However, the road networks extracted from remote sensing images are likely affected by shadows and trees, making the road map irregular and inaccurate. This research aims to improve the extraction of road centerlines using both very-high-resolution (VHR) aerial images and light detection and ranging (LiDAR) by accounting for road connectivity. The proposed method first applies the fractal net evolution approach (FNEA) to segment remote sensing images into image objects and then classifies image objects using the machine learning classifier, random forest. A post-processing approach based on the minimum area bounding rectangle (MABR) is proposed and a structure feature index is adopted to obtain the complete road networks. Finally, a multistep approach, that is, morphology thinning, Harris corner detection, and least square fitting (MHL) approach, is designed to accurately extract the road centerlines from the complex road networks. The proposed method is applied to three datasets, including the New York dataset obtained from the object identification dataset, the Vaihingen dataset obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) 2D semantic labelling benchmark and Guangzhou dataset. Compared with two state-of-the-art methods, the proposed method can obtain the highest completeness, correctness, and quality for the three datasets. The experiment results show that the proposed method is an efficient solution for extracting road centerlines in complex scenes from VHR aerial images and light detection and ranging (LiDAR) data.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3