LiDAR-Based Local Path Planning Method for Reactive Navigation in Underground Mines

Author:

Jiang YuanjianORCID,Peng PinganORCID,Wang Liguan,Wang Jiaheng,Wu Jiaxi,Liu Yongchun

Abstract

Reactive navigation is the most researched navigation technique for underground vehicles. Local path planning is one of the main research difficulties in reactive navigation. At present, no technique can perfectly solve the problem of local path planning for the reactive navigation of underground vehicles. Aiming to address this problem, this paper proposes a new method for local path planning based on 2D LiDAR. First, we convert the LiDAR data into a binary image, and we then extract the skeleton of the binary image through a thinning algorithm. Finally, we extract the centerline of the current laneway from these skeletons and smooth the obtained roadway centerline as the current planned local path. Experiments show that the proposed method has high robustness and good performance. Additionally, the method can also be used for the global path planning of underground maps.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Postgraduate Scientific Research Innovation Project of Hunan Province

Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Reactive navigation and opportunistic localization for autonomous underground mining vehicles;Roberts;Inf. Sci.,2002

2. Dragt, B.J., Camisani-Calzolari, F.R., and Craig, I.K. (2005). An Overview of the Automation of Load-Haul-Dump Vehicles in an Underground Mining Environment, International Federation of Accountants (IFAC).

3. Grisetti, G., Stachniss, C., and Burgard, W. (2005, January 18–22). Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain.

4. Roh, H.C., Sung, C.H., Kang, M.T., and Chung, M.J. (2011, January 23–26). Fast SLAM using polar scan matching and particle weight based occupancy grid map for mobile robot. Proceedings of the URAI 2011—2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence, Incheon, Republic of Korea.

5. Gustafson, A. (2011). Automation of Load Haul Dump Machines, Luleå University of Technology.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3